ISSN: 3048-6939

Enhanced Predictive Maintenance Strategy for Industrial Robotics using Hybrid Deep Learning and Sensor Fusion (P1-P1)

Abstract

Federated Learning, Intrusion Detection System (IDS), Explainable AI (XAI), Network Security, Hybrid IDS, Machine Learning, Anomaly Detection, Signature-Based Detection, Distributed Learning, Privacy Preservation

References

  1. 1. Ben Abdesslem, F., Ben Ali, J., Hammami, M., & Braham, A. (2017). Fault diagnosis of rotating machinery using support vector machines. Engineering Applications of Artificial Intelligence, 63, 1-10
  2. 2. Guo, L., Lei, Y., Xing, S., Yan, T., & Li, N. (2017). A hybrid intelligent method for fault diagnosis of rotating machinery. Measurement, 103, 163-172
  3. 3. Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural computation, 18(7), 1527-1554
  4. 4. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780
  5. 5. Janssens, O., Slavkovikj, V., Stockman, K., Loccufier, M., & Van de Walle, R. (2016). Convolutional neural networks based fault detection for rotating machinery. Journal of Sound and Vibration, 377, 331-345
  6. 6. Jardine, A. K., Lin, D., & Banjevic, D. (2006). A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical Systems and Signal Processing, 20(7), 1483-1510
  7. 7. Li, X., Lei, Y., Ding, Q., & Li, N. (2018). An improved random forest algorithm for remaining useful life prediction of bearings. IEEE Access, 6, 64943-64952
  8. 8. Liao, H., Jin, X., & Zhou, Z. (2007). Sensor fusion for fault diagnosis and prognostics in industrial applications: a review. IEEE Sensors Journal, 7(1), 85-103
  9. 9. Malhotra, P., Ramakrishnan, A., Anand, G., Agarwal, V., & Shroff, G. (2015). Long short term memory networks for anomaly detection in time series. In Proceedings of the 23rd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN) (pp. 89-94)
  10. 10. Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., & Gao, R. X. (2019). Deep learning and its applications to machine health monitoring. Mechanical Systems and Signal Processing, 115, 213-237
  11. 11. Sun, C., Zhang, Z., & Chen, X. (2020). A review of remaining useful life prediction methods based on deep learning. Measurement, 163, 107928
  12. 12. Lei, Y., Li, N., Guo, L., Li, N., & Gao, F. (2018). Machinery health prognostics: A systematic review from data acquisition to decision making. Mechanical Systems and Signal Processing, 104, 799-834
  13. 13. Saxena, A., Goebel, K., Simon, D., & Eklund, N. (2008). A framework for comparing aircraft engine health management algorithms. In 2008 IEEE Aerospace Conference (pp. 1-16). IEEE
  14. 14. Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8), 1798-1828
  15. 15. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning*. MIT press
Download PDF

How to Cite

Ivanenko Liudmyla, (2025/4/29). Enhanced Predictive Maintenance Strategy for Industrial Robotics using Hybrid Deep Learning and Sensor Fusion. JANOLI International Journal of Applied Engineering and Management, Volume UIh3MC5UrwhGKptS6jkQ, Issue 1.