ISSN: 3048-6939

Enhanced Predictive Maintenance Strategy for Industrial Robotics using Hybrid Deep Learning and Sensor Fusion

Abstract

Federated Learning, Intrusion Detection System (IDS), Explainable AI (XAI), Network Security, Hybrid IDS, Machine Learning, Anomaly Detection, Signature-Based Detection, Distributed Learning, Privacy Preservation

References

  1. 1. Ben Abdesslem, F., Ben Ali, J., Hammami, M., & Braham, A. (2017). Fault diagnosis of rotating machinery using support vector machines. Engineering Applications of Artificial Intelligence, 63, 1-10
  2. 2. Guo, L., Lei, Y., Xing, S., Yan, T., & Li, N. (2017). A hybrid intelligent method for fault diagnosis of rotating machinery. Measurement, 103, 163-172
  3. 3. Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural computation, 18(7), 1527-1554
  4. 4. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780
  5. 5. Janssens, O., Slavkovikj, V., Stockman, K., Loccufier, M., & Van de Walle, R. (2016). Convolutional neural networks based fault detection for rotating machinery. Journal of Sound and Vibration, 377, 331-345
  6. 6. Jardine, A. K., Lin, D., & Banjevic, D. (2006). A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical Systems and Signal Processing, 20(7), 1483-1510
  7. 7. Li, X., Lei, Y., Ding, Q., & Li, N. (2018). An improved random forest algorithm for remaining useful life prediction of bearings. IEEE Access, 6, 64943-64952
  8. 8. Liao, H., Jin, X., & Zhou, Z. (2007). Sensor fusion for fault diagnosis and prognostics in industrial applications: a review. IEEE Sensors Journal, 7(1), 85-103
  9. 9. Malhotra, P., Ramakrishnan, A., Anand, G., Agarwal, V., & Shroff, G. (2015). Long short term memory networks for anomaly detection in time series. In Proceedings of the 23rd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN) (pp. 89-94)
  10. 10. Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., & Gao, R. X. (2019). Deep learning and its applications to machine health monitoring. Mechanical Systems and Signal Processing, 115, 213-237
  11. 11. Sun, C., Zhang, Z., & Chen, X. (2020). A review of remaining useful life prediction methods based on deep learning. Measurement, 163, 107928
  12. 12. Lei, Y., Li, N., Guo, L., Li, N., & Gao, F. (2018). Machinery health prognostics: A systematic review from data acquisition to decision making. Mechanical Systems and Signal Processing, 104, 799-834
  13. 13. Saxena, A., Goebel, K., Simon, D., & Eklund, N. (2008). A framework for comparing aircraft engine health management algorithms. In 2008 IEEE Aerospace Conference (pp. 1-16). IEEE
  14. 14. Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8), 1798-1828
  15. 15. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning*. MIT press
Download PDF

How to Cite

Ivanenko Liudmyla, (2025-04-29 00:37:43.079). Enhanced Predictive Maintenance Strategy for Industrial Robotics using Hybrid Deep Learning and Sensor Fusion. JANOLI International Journal of Applied Engineering and Management, Volume UIh3MC5UrwhGKptS6jkQ, Issue 1.