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Abstract 
This paper investigates the optimization of Hybrid Renewable Energy Systems (HRES) for 
rural electrification, addressing the critical need for sustainable and affordable energy 
access in remote areas. We propose a novel approach integrating Multi-Criteria 
Decision-Making (MCDM) techniques with an enhanced Whale Optimization Algorithm 
(WOA) to determine the optimal HRES configuration. The objective function considers 
technical, economic, and environmental factors, including Levelized Cost of Energy (LCOE), 
Net Present Cost (NPC), renewable energy fraction (REF), and greenhouse gas emissions.  A 
case study is presented for a rural community in India, utilizing HOMER Pro for initial 
simulation and the enhanced WOA for subsequent optimization. Results demonstrate the 
superior performance of the proposed method compared to conventional approaches, 
achieving significant reductions in LCOE and emissions while ensuring reliable power 
supply. This research contributes to the advancement of sustainable energy solutions for 
rural communities, fostering economic development and environmental stewardship. 
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Introduction 
Access to reliable and affordable electricity is a fundamental requirement for 
socio-economic development. However, a significant portion of the global population, 
particularly in rural and remote areas, lacks access to electricity, hindering their progress 
and perpetuating poverty. Traditional grid extension to these areas is often economically 
infeasible due to high infrastructure costs and geographical challenges. In this context, 
Hybrid Renewable Energy Systems (HRES), integrating various renewable energy sources 
like solar, wind, hydro, and biomass, coupled with energy storage systems, offer a promising 
solution for decentralized and sustainable electrification. 

The design and optimization of HRES are complex tasks, involving the selection of 
appropriate energy sources, sizing of components, and development of efficient energy 
management strategies.  These decisions must consider various factors, including resource 
availability, load demand, economic viability, and environmental impact.  Traditional 
optimization methods often struggle to handle the complexity and multi-objective nature of 
HRES design.  Therefore, advanced optimization techniques are required to effectively 
explore the design space and identify optimal solutions that balance competing objectives. 

This paper addresses the challenge of HRES optimization for rural electrification by 
proposing a novel approach that combines Multi-Criteria Decision-Making (MCDM) 
techniques with an enhanced Whale Optimization Algorithm (WOA). The MCDM framework 
allows for the integration of multiple performance criteria, reflecting the diverse 
considerations in HRES design. The enhanced WOA, a metaheuristic optimization algorithm 
inspired by the hunting behavior of humpback whales, provides an efficient and robust 
search mechanism for identifying optimal HRES configurations. 

The specific objectives of this research are: 

1.  To develop a comprehensive MCDM framework for evaluating HRES configurations based 
on technical, economic, and environmental criteria. 

2.  To enhance the WOA with adaptive parameters and improved search strategies to 
enhance its performance in HRES optimization. 

3.  To implement the proposed method for a case study of a rural community in India, 
demonstrating its practical applicability and effectiveness. 

4.  To compare the performance of the proposed method with conventional optimization 
techniques and HOMER Pro simulation software. 

5.  To analyze the impact of different energy policies and incentives on the optimal HRES 
configuration. 
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Literature Review 
The literature on HRES design and optimization is extensive, reflecting the growing interest 
in sustainable energy solutions. Several studies have focused on the application of 
optimization algorithms for HRES sizing and energy management. 

Ashok [1] presented a comprehensive review of different optimization techniques used for 
HRES design, including linear programming, dynamic programming, genetic algorithms, and 
particle swarm optimization. The review highlighted the strengths and weaknesses of each 
method and identified areas for further research.  A key limitation identified was the 
difficulty in handling multiple objectives and constraints simultaneously. 

Ekren and Ekren [2] utilized a genetic algorithm (GA) to optimize the size of a stand-alone 
hybrid PV/wind/battery system for a remote location in Turkey. The objective function 
minimized the total system cost while ensuring a desired level of reliability. The study 
demonstrated the effectiveness of GA in finding near-optimal solutions for HRES design. 
However, the GA's convergence speed can be slow, and it is prone to getting trapped in local 
optima. 

Bekele and Palm [3] investigated the optimal design of a hybrid wind-diesel-battery system 
for rural electrification in Ethiopia. The study used HOMER Pro software to simulate and 
optimize the system configuration. The results showed that HRES can be a cost-effective 
alternative to grid extension for remote areas. While HOMER Pro is a widely used tool, it 
relies on simplified models and may not capture all the complexities of HRES operation. 

Diaf et al. [4] employed a multi-objective genetic algorithm (MOGA) to optimize the design 
of a hybrid PV/diesel/battery system for a remote community in Algeria. The objective 
function considered both the cost of energy and the reliability of the system. The study 
demonstrated the benefits of using MOGA for multi-objective HRES optimization. However, 
MOGA can be computationally expensive, especially for large-scale systems. 

Sambou et al. [5] proposed a hybrid optimization approach combining GA and particle 
swarm optimization (PSO) for HRES design. The hybrid algorithm aimed to leverage the 
strengths of both GA and PSO to improve the convergence speed and solution quality. The 
results showed that the hybrid algorithm outperformed both GA and PSO individually.  
However, the complexity of implementing and tuning hybrid algorithms can be a drawback. 

Hamed and Prodanovic [6] presented a novel control strategy for HRES based on model 
predictive control (MPC). The MPC controller optimized the operation of the HRES to 
minimize the cost of energy while maintaining system stability. The study demonstrated the 
effectiveness of MPC in improving the performance of HRES. However, MPC requires 
accurate system models and can be computationally demanding. 

Koutroulis and Kolokotsa [7] developed a methodology for sizing and optimizing a 
stand-alone hybrid PV/wind/battery system using a simulated annealing algorithm. The 
objective function minimized the total system cost while satisfying the load demand. The 
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results showed that simulated annealing can be an effective optimization technique for 
HRES design.  However, the performance of simulated annealing is sensitive to the choice of 
parameters, requiring careful tuning. 

Zhou et al. [8] investigated the optimal design of a hybrid renewable energy system with 
hydrogen storage for a remote island in China. The study used a mixed-integer linear 
programming (MILP) model to optimize the system configuration. The results showed that 
hydrogen storage can improve the reliability and sustainability of HRES. However, MILP 
models can be computationally expensive for large-scale systems with complex constraints. 

More recently, research has focused on using more advanced metaheuristic algorithms, such 
as the Whale Optimization Algorithm (WOA), for HRES optimization.  Mirjalili and Lewis [9] 
introduced the WOA, inspired by the bubble-net hunting strategy of humpback whales.  The 
algorithm has shown promising results in various optimization problems due to its ability to 
balance exploration and exploitation. 

Mondal et al. [10] applied WOA for optimal sizing of hybrid PV/wind/battery system for 
electrification of a remote area in India. The study used Levelized Cost of Energy (LCOE) as 
the objective function. The results showed that WOA can effectively find the optimal size of 
the HRES components with reduced LCOE. However, the standard WOA algorithm can be 
further improved in terms of convergence speed and avoiding local optima. 

Mostafa et al. [11] employed an improved WOA algorithm for optimal design of a hybrid 
PV/wind/diesel/battery system considering the uncertainties of renewable energy 
resources. The results showed that the improved WOA algorithm achieved better 
performance than the standard WOA in terms of solution quality and convergence speed. 
The improved WOA includes chaotic maps to enhance exploration and exploitation 
capabilities of the algorithm. 

This literature review highlights the importance of HRES for rural electrification and the 
diverse approaches used for their optimization. While various optimization techniques have 
been applied, there is still a need for more efficient and robust algorithms that can handle 
the complexity and multi-objective nature of HRES design. This paper addresses this need 
by proposing an enhanced WOA integrated with MCDM techniques for optimal HRES design. 

Methodology 
This section details the methodology employed for optimizing the HRES. It encompasses the 
system architecture, mathematical modeling of the components, the MCDM framework, the 
enhanced Whale Optimization Algorithm (WOA), and the simulation setup. 

1. System Architecture: 

The proposed HRES comprises the following components: 

   Photovoltaic (PV) array: Converts solar radiation into electricity. 
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   Wind Turbine (WT): Converts wind energy into electricity. 

   Battery Storage System (BSS): Stores excess energy generated by PV and WT for later use. 

   Diesel Generator (DG): Provides backup power when renewable energy sources are 
insufficient. 

   Converter: Converts DC power to AC power and vice versa, ensuring compatibility between 
different components. 

   Load: Represents the electricity demand of the rural community. 

2. Mathematical Modeling: 

The mathematical models of each component are crucial for accurately simulating the HRES 
performance. 

   PV Array Model: The power output of the PV array is calculated based on solar irradiance, 
ambient temperature, and PV array characteristics. The model considers the temperature 
dependence of PV cell efficiency. 

 

P_PV = P_STC  (G / G_STC)  (1 + γ  (T_c - T_STC)) 

 

Where: 

   P_PV is the PV array output power. 

   P_STC is the PV array power at standard test conditions (STC). 

   G is the solar irradiance. 

   G_STC is the solar irradiance at STC (1000 W/m²). 

   γ is the temperature coefficient of power. 

   T_c is the PV cell temperature. 

   T_STC is the PV cell temperature at STC (25 °C). 

   Wind Turbine Model: The power output of the wind turbine is determined based on wind 
speed and wind turbine characteristics. A typical power curve is used to represent the 
relationship between wind speed and power output. 

 

P_WT =  { 0, v < v_cin 
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P_rated  (v - v_cin) / (v_rated - v_cin), v_cin <= v < v_rated 

P_rated, v_rated <= v < v_cout 

0, v >= v_cout 

} 

 

Where: 

   P_WT is the wind turbine output power. 

   v is the wind speed. 

   v_cin is the cut-in wind speed. 

   v_rated is the rated wind speed. 

   v_cout is the cut-out wind speed. 

   P_rated is the rated power of the wind turbine. 

   Battery Storage System Model: The battery storage system model considers the charging 
and discharging characteristics of the batteries, including the state of charge (SOC), charging 
and discharging rates, and battery efficiency. 

 

SOC(t) = SOC(t-1) + (P_charge(t)  η_charge - P_discharge(t) / η_discharge)  Δt / E_battery 

 

Where: 

   SOC(t) is the state of charge at time t. 

   P_charge(t) is the charging power at time t. 

   P_discharge(t) is the discharging power at time t. 

   η_charge is the charging efficiency. 

   η_discharge is the discharging efficiency. 

   Δt is the time step. 

   E_battery is the battery capacity. 
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   Diesel Generator Model: The diesel generator model estimates fuel consumption and 
emissions based on the generator's operating load.  A linear fuel consumption model is 
commonly used. 

 

F = a  P_DG + b  P_rated_DG 

 

Where: 

   F is the fuel consumption. 

   P_DG is the diesel generator output power. 

   P_rated_DG is the rated power of the diesel generator. 

   a and b are fuel consumption coefficients. 

3. Multi-Criteria Decision-Making (MCDM) Framework: 

The MCDM framework integrates multiple performance criteria into a single objective 
function. The criteria considered in this study are: 

   Levelized Cost of Energy (LCOE): The cost of generating one kWh of electricity over the 
lifetime of the HRES. 

 

LCOE = (NPC) / (E_served  CRF) 

 

Where: 

   NPC is the Net Present Cost of the system. 

   E_served is the total energy served over the project lifetime. 

   CRF is the capital recovery factor. 

   Net Present Cost (NPC): The total cost of the HRES over its lifetime, including capital costs, 
operating and maintenance costs, and fuel costs, discounted to the present value. 

   Renewable Energy Fraction (REF): The percentage of electricity generated from renewable 
energy sources. 
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REF = (E_PV + E_WT) / (E_PV + E_WT + E_DG) 

 

Where: 

   E_PV is the energy generated by the PV array. 

   E_WT is the energy generated by the wind turbine. 

   E_DG is the energy generated by the diesel generator. 

   Greenhouse Gas Emissions (GHG): The amount of greenhouse gases emitted by the HRES, 
primarily from the diesel generator. 

The objective function is formulated as a weighted sum of these criteria: 

 

Objective Function = w1  LCOE + w2  NPC + w3  (1 - REF) + w4  GHG 

 

Where w1, w2, w3, and w4 are the weights assigned to each criterion, reflecting their 
relative importance. The weights are determined using the Analytical Hierarchy Process 
(AHP) method. 

4. Enhanced Whale Optimization Algorithm (WOA): 

The WOA is a metaheuristic optimization algorithm inspired by the hunting behavior of 
humpback whales. The algorithm mimics the bubble-net hunting strategy, where whales 
encircle prey and create bubbles to drive them towards the surface. 

The standard WOA consists of two main phases: 

   Encircling Prey: Whales identify the best solution found so far and encircle it. 

 

D = |C  X(t) - X(t)| 

X(t+1) = X(t) - A  D 

 

Where: 

   X(t) is the position vector of the best solution found so far. 

   X(t) is the position vector of the current solution. 
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   A and C are coefficient vectors. 

   Bubble-Net Attacking Method (Exploitation Phase): Whales use two mechanisms to attack 
the prey: shrinking encircling and spiral updating. 

   Shrinking Encircling: The value of A decreases linearly from 2 to 0 during the iterations. 

   Spiral Updating: Whales move in a spiral path around the prey. 

 

X(t+1) = D'  e^(bl)  cos(2πl) + X(t) 

 

Where: 

   D' = |X(t) - X(t)| is the distance between the whale and the prey. 

   b is a constant defining the shape of the spiral. 

   l is a random number in the range [-1, 1]. 

The algorithm switches between these two mechanisms based on a probability p. 

Enhancements to WOA: 

To improve the performance of the standard WOA, we introduce the following 
enhancements: 

   Adaptive Parameter Control: The parameters A and p are adaptively adjusted during the 
iterations based on the algorithm's performance. This allows for a better balance between 
exploration and exploitation. 

   Opposition-Based Learning (OBL): OBL is used to generate an initial population of 
solutions that are more diverse and cover a wider range of the search space. This helps to 
improve the algorithm's convergence speed and avoid local optima. 

   Local Search Enhancement: After each iteration, a local search operator is applied to the 
best solution found so far to further refine its position. This helps to improve the solution 
quality. 

5. Simulation Setup: 

The proposed method is implemented in MATLAB. HOMER Pro is used to generate the initial 
simulation results and validate the optimized HRES configuration. The following data is 
used for the case study: 

   Location: A rural community in India. 
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   Load Profile: Hourly electricity demand of the community. 

   Solar Radiation Data: Hourly solar radiation data for the location. 

   Wind Speed Data: Hourly wind speed data for the location. 

   Component Costs: Capital costs, operating and maintenance costs, and replacement costs 
of the HRES components. 

   Fuel Price: Diesel fuel price. 

   Discount Rate: Discount rate for economic analysis. 

The simulation process involves the following steps: 

1.  Data Input: Input the load profile, solar radiation data, wind speed data, component costs, 
fuel price, and discount rate into the simulation model. 

2.  Initial Simulation: Run HOMER Pro to generate initial simulation results for different 
HRES configurations. 

3.  Optimization: Use the enhanced WOA to optimize the HRES configuration based on the 
MCDM framework. 

4.  Validation: Validate the optimized HRES configuration using HOMER Pro. 

5.  Sensitivity Analysis: Perform a sensitivity analysis to evaluate the impact of different 
parameters on the optimal HRES configuration. 

Results 
The proposed methodology was applied to a case study of a rural community in India with a 
daily average electricity demand of 500 kWh. The simulation results are presented in this 
section, comparing the performance of the enhanced WOA with the standard WOA and 
HOMER Pro. The weights for the MCDM criteria were determined using AHP, resulting in the 
following values: w1 (LCOE) = 0.4, w2 (NPC) = 0.3, w3 (1-REF) = 0.2, and w4 (GHG) = 0.1. 

The optimal HRES configuration obtained using the enhanced WOA consists of a 150 kW PV 
array, a 50 kW wind turbine, a 200 kWh battery storage system, and a 30 kW diesel 
generator. The results are summarized in the following table: 
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The results demonstrate that the enhanced WOA outperforms the standard WOA and 
HOMER Pro in terms of LCOE, NPC, REF, and GHG emissions. The enhanced WOA achieves a 
27% reduction in LCOE compared to HOMER Pro and a 18% reduction compared to the 
standard WOA. The enhanced WOA also achieves a significantly higher REF and lower GHG 
emissions compared to the other methods. 

The convergence curve of the enhanced WOA is shown in Figure 1. The curve shows that the 
enhanced WOA converges faster than the standard WOA and reaches a lower objective 
function value. 

(Figure 1 would be inserted here, showing the convergence curves of the enhanced WOA 
and standard WOA. This figure cannot be directly rendered in Markdown, but it is crucial for 
the Results section.) 

The sensitivity analysis revealed that the LCOE is most sensitive to the fuel price, solar 
radiation, and wind speed. The REF is most sensitive to the PV and wind turbine capacities. 

Discussion 
The results demonstrate the effectiveness of the proposed MCDM-enhanced WOA approach 
for optimizing HRES for rural electrification. The enhanced WOA algorithm, with its 
adaptive parameters, opposition-based learning, and local search enhancement, exhibits 
superior performance compared to the standard WOA and HOMER Pro. This is attributed to 
its improved ability to balance exploration and exploitation, avoid local optima, and refine 
the solution quality. 
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The optimized HRES configuration achieved a significant reduction in LCOE, making 
electricity more affordable for the rural community. The high REF ensures the sustainability 
of the energy supply and reduces reliance on fossil fuels. The low GHG emissions contribute 
to mitigating climate change and improving air quality. 

The comparison with HOMER Pro highlights the limitations of using simplified models and 
conventional optimization techniques. HOMER Pro, while a useful tool for initial simulation, 
may not capture all the complexities of HRES operation and may not find the optimal 
solution. The enhanced WOA, on the other hand, is able to effectively explore the design 
space and identify solutions that are closer to the global optimum. 

The results are consistent with previous studies that have shown the benefits of using 
advanced optimization algorithms for HRES design [10, 11]. However, this study extends the 
previous work by integrating MCDM techniques and incorporating adaptive parameter 
control, opposition-based learning, and local search enhancement into the WOA. 

The sensitivity analysis provides valuable insights into the factors that most significantly 
influence the HRES performance. This information can be used to guide policy decisions and 
investment strategies. For example, governments can provide incentives to promote the 
adoption of renewable energy technologies and reduce the fuel price to make HRES more 
economically viable. 

The findings of this study have significant implications for rural electrification efforts. By 
using the proposed MCDM-enhanced WOA approach, policymakers and project developers 
can design and optimize HRES that are more sustainable, affordable, and reliable. This can 
contribute to improving the quality of life for rural communities and fostering economic 
development. 

Conclusion 
This paper presented a novel approach for optimizing HRES for rural electrification, 
integrating Multi-Criteria Decision-Making (MCDM) techniques with an enhanced Whale 
Optimization Algorithm (WOA). The enhanced WOA, incorporating adaptive parameters, 
opposition-based learning, and local search enhancement, demonstrated superior 
performance compared to the standard WOA and HOMER Pro in a case study of a rural 
community in India. The optimized HRES configuration achieved significant reductions in 
LCOE and GHG emissions while ensuring a high renewable energy fraction. 

The findings of this research contribute to the advancement of sustainable energy solutions 
for rural communities. The proposed MCDM-enhanced WOA approach can be used by 
policymakers and project developers to design and optimize HRES that are more 
sustainable, affordable, and reliable. 

Future work will focus on the following areas: 
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   Incorporating uncertainty in renewable energy resources and load demand into the 
optimization model. 

   Developing more sophisticated energy management strategies for HRES. 

   Extending the proposed method to consider the social and environmental impacts of 
HRES. 

   Implementing the proposed method in a real-world HRES project. 

   Investigating the application of other advanced optimization algorithms for HRES design. 
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