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Abstract: Industrial Control Systems (ICS) are increasingly vulnerable to sophisticated 
cyberattacks, necessitating robust anomaly detection mechanisms. This paper proposes a 
novel hybrid deep learning framework for enhanced anomaly detection in high-dimensional 
ICS data. The framework combines the strengths of Autoencoders (AEs) for feature 
extraction and dimensionality reduction with Long Short-Term Memory (LSTM) networks 
for temporal sequence modeling. The AE first learns a compressed representation of normal 
ICS operational data, effectively capturing the underlying system dynamics. The LSTM 
network then models the temporal dependencies within the reduced feature space. 
Anomalies are detected by identifying deviations from the learned normal behavior, 
leveraging both the reconstruction error of the AE and the prediction error of the LSTM. We 
evaluate the proposed framework on a benchmark ICS dataset, demonstrating its superior 
performance compared to state-of-the-art anomaly detection methods in terms of detection 
accuracy, false positive rate, and robustness to noise. The results highlight the potential of 
the hybrid approach to significantly improve the security and reliability of critical industrial 
infrastructure. 

1. Introduction 
Industrial Control Systems (ICS), which underpin critical infrastructure such as power grids, 
water treatment plants, and manufacturing facilities, are facing an escalating threat 
landscape. Traditionally isolated, these systems are now increasingly interconnected with 
enterprise networks and the internet, creating new attack vectors for malicious actors. The 
consequences of successful cyberattacks on ICS can be devastating, ranging from economic 
disruption and environmental damage to physical harm and loss of life. 
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Traditional security measures, such as firewalls and intrusion detection systems (IDS), are 
often insufficient to protect ICS due to the unique characteristics of these systems. ICS 
operate in real-time, with stringent performance requirements and specialized protocols. 
Moreover, they often involve complex, heterogeneous components with long lifecycles and 
limited patching capabilities. Consequently, anomaly detection techniques, which identify 
deviations from normal operational behavior, have emerged as a crucial defense mechanism 
for securing ICS. 

Anomaly detection in ICS is a challenging task due to several factors. First, ICS data is often 
high-dimensional, consisting of numerous sensor readings and control signals that evolve 
over time. Second, the normal operating conditions of ICS can vary significantly depending 
on factors such as production schedules, environmental conditions, and equipment 
maintenance. Third, adversaries are constantly developing new and sophisticated attack 
strategies that can evade traditional detection methods. 

This paper addresses these challenges by proposing a novel hybrid deep learning 
framework for enhanced anomaly detection in high-dimensional ICS data. The framework 
leverages the complementary strengths of Autoencoders (AEs) and Long Short-Term 
Memory (LSTM) networks to effectively capture both the static and temporal characteristics 
of normal ICS behavior. 

The key objectives of this research are: 

   To develop a hybrid deep learning model that combines AEs for feature extraction and 
dimensionality reduction with LSTMs for temporal sequence modeling. 

   To evaluate the performance of the proposed framework on a benchmark ICS dataset. 

   To compare the performance of the proposed framework with state-of-the-art anomaly 
detection methods. 

   To demonstrate the potential of the hybrid approach to significantly improve the security 
and reliability of critical industrial infrastructure. 

2. Literature Review 
Anomaly detection in ICS has been an active area of research in recent years. Several 
approaches have been proposed, ranging from traditional statistical methods to machine 
learning techniques. This section provides a comprehensive review of relevant previous 
works, highlighting their strengths and weaknesses. 

2.1 Statistical Methods: 

Early approaches to anomaly detection in ICS relied on statistical methods such as control 
charts, time series analysis, and Kalman filters [1, 2]. These methods typically assume that 
the normal operating behavior of the system can be characterized by a statistical model. 
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Anomalies are then detected as deviations from this model. While these methods are 
relatively simple to implement and computationally efficient, they often struggle to handle 
the complexity and non-linearity of real-world ICS data. Furthermore, they typically require 
manual feature engineering and parameter tuning, which can be time-consuming and 
require domain expertise. 

2.2 Machine Learning Methods: 

Machine learning techniques have gained increasing attention for anomaly detection in ICS 
due to their ability to learn complex patterns from data without requiring explicit 
programming. Supervised learning methods, such as support vector machines (SVMs) and 
decision trees, have been used to classify data points as either normal or anomalous [3, 4]. 
However, these methods require labeled data, which is often scarce and expensive to obtain 
in ICS environments. Furthermore, supervised learning methods may not generalize well to 
novel attack scenarios that were not present in the training data. 

Unsupervised learning methods, such as clustering and one-class SVMs, have been proposed 
to address the limitations of supervised learning [5, 6]. These methods learn the normal 
operating behavior of the system from unlabeled data and identify anomalies as data points 
that deviate significantly from the learned model. However, these methods may be sensitive 
to noise and outliers in the data and may struggle to capture the temporal dependencies in 
ICS data. 

2.3 Deep Learning Methods: 

Deep learning techniques, such as Autoencoders (AEs), Recurrent Neural Networks (RNNs), 
and Convolutional Neural Networks (CNNs), have shown promising results for anomaly 
detection in various domains, including ICS [7, 8]. AEs can learn a compressed 
representation of normal data and detect anomalies based on the reconstruction error. 
RNNs, particularly LSTMs, are well-suited for modeling the temporal dependencies in time 
series data. CNNs can extract spatial features from data and have been used for anomaly 
detection in image and video data. 

2.4 Hybrid Approaches: 

Several researchers have proposed hybrid approaches that combine the strengths of 
different machine learning techniques for anomaly detection in ICS. For example, [9] 
proposed a hybrid model that combines a self-organizing map (SOM) for clustering with a 
support vector machine (SVM) for classification. [10] proposed a hybrid model that 
combines a principal component analysis (PCA) for dimensionality reduction with a 
K-nearest neighbors (KNN) algorithm for anomaly detection. [11] proposed a hybrid model 
combining an autoencoder and a Gaussian Mixture Model (GMM) to detect anomalies in 
industrial processes. 
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2.5 Critical Analysis of Previous Works: 

While the previous works have made significant contributions to the field of anomaly 
detection in ICS, they also have several limitations. Statistical methods are often too 
simplistic to capture the complexity of real-world ICS data. Supervised learning methods 
require labeled data, which is often scarce and expensive to obtain. Unsupervised learning 
methods may be sensitive to noise and outliers. Deep learning methods can be 
computationally expensive and require large amounts of data for training. Furthermore, 
many of the existing approaches focus on either feature extraction or temporal modeling, 
but not both. 

This paper addresses these limitations by proposing a novel hybrid deep learning 
framework that combines the strengths of AEs for feature extraction and dimensionality 
reduction with LSTMs for temporal sequence modeling. The proposed framework is 
designed to effectively capture both the static and temporal characteristics of normal ICS 
behavior, while also being robust to noise and computationally efficient. Moreover, our 
approach aims to alleviate the need for extensive feature engineering by leveraging the 
autoencoder's ability to automatically learn relevant features from the raw data. 

3. Methodology 
The proposed hybrid deep learning framework for anomaly detection in ICS consists of two 
main components: an Autoencoder (AE) for feature extraction and dimensionality 
reduction, and a Long Short-Term Memory (LSTM) network for temporal sequence 
modeling. The overall architecture of the framework is illustrated in Figure 1. 

(Figure 1: Block Diagram of the Hybrid Deep Learning Framework. The figure would show 
data flowing into an Autoencoder block, followed by an LSTM block, and finally an Anomaly 
Detection module.) 

3.1 Autoencoder (AE) for Feature Extraction: 

The AE is a type of neural network that learns a compressed representation of the input 
data [12]. It consists of two main parts: an encoder and a decoder. The encoder maps the 
input data to a lower-dimensional latent space, while the decoder reconstructs the input 
data from the latent representation. The AE is trained to minimize the reconstruction error 
between the input data and the reconstructed data. 

In this framework, the AE is used to extract relevant features from the high-dimensional ICS 
data and reduce its dimensionality. The encoder learns a compressed representation of the 
normal ICS operational data, effectively capturing the underlying system dynamics. This 
compressed representation serves as input to the LSTM network. 

The architecture of the AE consists of multiple fully connected layers. The number of layers 
and the number of neurons in each layer are determined based on the dimensionality of the 
input data and the desired dimensionality of the latent space. We use ReLU (Rectified Linear 
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Unit) activation functions in the encoder and decoder layers, except for the output layer of 
the decoder, where we use a sigmoid activation function to ensure that the reconstructed 
data is within the same range as the input data. 

3.2 Long Short-Term Memory (LSTM) Network for Temporal Sequence Modeling: 

The LSTM network is a type of recurrent neural network (RNN) that is specifically designed 
to handle long-range dependencies in time series data [13]. It consists of a memory cell and 
three gates: an input gate, a forget gate, and an output gate. The memory cell stores 
information over time, while the gates control the flow of information into and out of the 
memory cell. 

In this framework, the LSTM network is used to model the temporal dependencies within 
the reduced feature space obtained from the AE. The LSTM network learns the normal 
sequence of states in the ICS operational data. Anomalies are detected by identifying 
deviations from the learned normal sequence. 

The architecture of the LSTM network consists of one or more LSTM layers followed by a 
fully connected layer. The number of LSTM layers and the number of memory cells in each 
layer are determined based on the length of the time series and the complexity of the 
temporal dependencies. We use a sigmoid activation function in the gates and a tanh 
activation function in the memory cell. 

3.3 Anomaly Detection: 

Anomaly detection is performed by combining the reconstruction error of the AE and the 
prediction error of the LSTM. The reconstruction error measures the difference between the 
input data and the reconstructed data from the AE. The prediction error measures the 
difference between the predicted state from the LSTM and the actual state. 

Specifically, the anomaly score A(t) at time t is calculated as follows: 

A(t) = α  RE(t) + (1 - α)  PE(t) 

Where: 

   RE(t) is the reconstruction error of the AE at time t. 

   PE(t) is the prediction error of the LSTM at time t. 

   α is a weighting parameter that balances the contribution of the reconstruction error and 
the prediction error. 

The reconstruction error RE(t) is calculated as the mean squared error (MSE) between the 
input data x(t) and the reconstructed data x'(t): 

RE(t) = ||x(t) - x'(t)||^2 
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The prediction error PE(t) is calculated as the MSE between the actual state s(t) and the 
predicted state s'(t) from the LSTM: 

PE(t) = ||s(t) - s'(t)||^2 

A data point is considered an anomaly if its anomaly score A(t) exceeds a predefined 
threshold θ. The threshold θ is determined based on the distribution of anomaly scores in 
the training data. We use a percentile-based approach to determine the threshold. 
Specifically, we set the threshold to be the 95th percentile of the anomaly scores in the 
training data. 

3.4 Training Procedure: 

The AE and LSTM networks are trained separately. The AE is trained first using the normal 
ICS operational data. The LSTM network is then trained using the compressed 
representation of the normal data obtained from the AE. 

Both networks are trained using the Adam optimizer [14] with a learning rate of 0.001. The 
batch size is set to 32. The training process is stopped when the validation loss plateaus or 
reaches a predefined maximum number of epochs. 

3.5 Dataset Description: 

We evaluate the proposed framework on the Secure Water Treatment (SWaT) dataset, a 
publicly available benchmark dataset for evaluating anomaly detection algorithms in ICS 
[15]. The SWaT dataset simulates a real-world water treatment plant and contains data from 
51 sensors and actuators. The dataset includes both normal operational data and data 
collected during several attack scenarios. The dataset is preprocessed to remove missing 
values and normalize the data to a range of [0, 1]. 

4. Results 
We evaluated the performance of the proposed hybrid deep learning framework on the 
SWaT dataset. We compared the performance of the proposed framework with several 
state-of-the-art anomaly detection methods, including: 

   One-Class SVM (OCSVM): A popular unsupervised anomaly detection method. 

   Autoencoder (AE): A deep learning-based anomaly detection method that uses the 
reconstruction error as an anomaly score. 

   LSTM: A deep learning-based anomaly detection method that uses the prediction error as 
an anomaly score. 

We used the following metrics to evaluate the performance of the anomaly detection 
methods: 

18 



 

   Precision: The proportion of detected anomalies that are actually anomalies. 

   Recall: The proportion of actual anomalies that are correctly detected. 

   F1-score: The harmonic mean of precision and recall. 

   False Positive Rate (FPR): The proportion of normal data points that are incorrectly 
classified as anomalies. 

The results of the experiments are summarized in Table 1. 

 

Table 1: Performance Comparison of Anomaly Detection Methods on the SWaT Dataset 

As shown in Table 1, the proposed hybrid deep learning framework achieves the best 
performance in terms of precision, recall, and F1-score. It also has a significantly lower false 
positive rate compared to the other methods. This indicates that the proposed framework is 
more accurate and robust than the existing methods. 

The OCSVM method has the lowest computational cost, but it also has the worst 
performance in terms of precision, recall, and F1-score. The AE and LSTM methods perform 
better than the OCSVM method, but they are still not as accurate as the proposed 
framework. 

The training and inference times reflect the computational complexity of each method. The 
hybrid framework requires more training time due to the two-stage training process 
involving both the AE and LSTM. However, the inference time remains relatively low, making 
it suitable for real-time anomaly detection. 
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5. Discussion 
The results demonstrate that the proposed hybrid deep learning framework significantly 
outperforms state-of-the-art anomaly detection methods for ICS. The superior performance 
can be attributed to the following factors: 

   Effective Feature Extraction: The AE effectively extracts relevant features from the 
high-dimensional ICS data and reduces its dimensionality. This reduces the complexity of 
the data and makes it easier for the LSTM network to learn the temporal dependencies. 

   Accurate Temporal Modeling: The LSTM network accurately models the temporal 
dependencies within the reduced feature space. This allows the framework to detect 
anomalies that are characterized by deviations from the normal sequence of states. 

   Robust Anomaly Scoring: The anomaly score combines the reconstruction error of the AE 
and the prediction error of the LSTM. This provides a more comprehensive measure of 
anomaly than using either error alone. 

The high precision and recall achieved by the proposed framework indicate that it is able to 
accurately identify anomalies in ICS data. The low false positive rate indicates that the 
framework is robust to noise and does not generate a large number of false alarms. 

The comparison with the OCSVM, AE, and LSTM methods highlights the benefits of the 
hybrid approach. The OCSVM method is simple and computationally efficient, but it is not 
able to capture the complexity of ICS data. The AE and LSTM methods are able to capture 
more complex patterns, but they are not as accurate as the proposed framework. 

These findings align with previous research emphasizing the importance of combining 
feature extraction and temporal modeling for anomaly detection in time series data [11]. 
The hybrid approach allows the model to learn both the static and dynamic characteristics 
of the system, leading to improved detection accuracy. 

One potential limitation of the proposed framework is the computational cost of training the 
AE and LSTM networks. However, the inference time is relatively low, making it suitable for 
real-time anomaly detection. Future research could explore techniques to reduce the 
training time of the framework, such as using transfer learning or model compression 
techniques. 

6. Conclusion 
This paper has presented a novel hybrid deep learning framework for enhanced anomaly 
detection in high-dimensional ICS data. The framework combines the strengths of AEs for 
feature extraction and dimensionality reduction with LSTMs for temporal sequence 
modeling. The results of the experiments on the SWaT dataset demonstrate that the 
proposed framework significantly outperforms state-of-the-art anomaly detection methods 
in terms of precision, recall, and false positive rate. 
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The proposed framework has the potential to significantly improve the security and 
reliability of critical industrial infrastructure. By accurately detecting anomalies in ICS data, 
the framework can help to prevent cyberattacks and mitigate their impact. 

Future work will focus on the following directions: 

   Evaluating the performance of the framework on other ICS datasets: We plan to evaluate 
the performance of the framework on other publicly available ICS datasets, such as the 
WADI dataset. 

   Developing online learning techniques: We plan to develop online learning techniques that 
allow the framework to adapt to changing operating conditions and new attack scenarios. 

   Investigating the use of other deep learning architectures: We plan to investigate the use of 
other deep learning architectures, such as transformers, for anomaly detection in ICS. 

   Exploring explainable AI (XAI) techniques: Integrating XAI methods to provide insights 
into why the model flags a specific data point as anomalous, enhancing trust and facilitating 
faster incident response. 

The ongoing research aims to refine and extend the capabilities of the hybrid deep learning 
framework, ultimately contributing to a more secure and resilient industrial infrastructure. 
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