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Abstract: 
The increasing volume and complexity of healthcare data present both opportunities and 
challenges for predictive modeling. While big data analytics holds immense promise for 
improving diagnosis, treatment, and patient outcomes, the sensitive nature of medical 
information necessitates stringent privacy safeguards. This paper proposes a novel 
approach that combines Federated Learning (FL) with Differential Privacy (DP) to enable 
collaborative model training across multiple healthcare institutions without directly sharing 
patient data. We develop and evaluate a framework that allows for distributed model 
training while ensuring patient privacy through the application of DP mechanisms during 
the aggregation of model updates. Our results demonstrate that this approach can achieve 
comparable predictive performance to centralized training while significantly mitigating 
privacy risks. We analyze the trade-off between privacy and accuracy and provide insights 
into the optimal configuration of DP parameters for healthcare applications. The proposed 
framework offers a practical and scalable solution for leveraging the power of big data in 
healthcare while upholding ethical and legal obligations related to data privacy. 

Introduction: 
The healthcare industry is undergoing a data revolution. Electronic Health Records (EHRs), 
medical imaging, genomic data, and wearable sensor data are generating vast amounts of 
information, often referred to as "big data." This data deluge holds the potential to 
revolutionize healthcare delivery through improved diagnostics, personalized treatment 
plans, and proactive disease management. Predictive modeling, powered by machine 
learning algorithms, is at the forefront of this transformation. By analyzing patterns and 

24 



 

trends within large datasets, these models can predict patient outcomes, identify high-risk 
individuals, and optimize resource allocation. 

However, the use of healthcare data for predictive modeling raises significant privacy 
concerns. Medical information is highly sensitive, and its unauthorized disclosure can have 
severe consequences for individuals. Traditional approaches to data sharing, such as 
centralized data repositories, are increasingly scrutinized due to the risk of data breaches 
and re-identification attacks. Moreover, regulatory frameworks like HIPAA (Health 
Insurance Portability and Accountability Act) impose strict requirements for protecting 
patient privacy. 

Federated Learning (FL) offers a promising alternative to centralized data sharing. FL is a 
distributed machine learning paradigm that enables model training across multiple devices 
or institutions without directly exchanging the underlying data. Instead, each participant 
trains a local model on their own data, and the model updates are aggregated to create a 
global model. This approach preserves data privacy by keeping the raw data on the local 
devices. 

Despite its inherent privacy advantages, FL is not immune to privacy risks. Adversaries can 
potentially infer sensitive information from the model updates that are shared during the 
aggregation process. To further enhance privacy, Differential Privacy (DP) can be 
incorporated into the FL framework. DP is a mathematical definition of privacy that 
provides rigorous guarantees against information leakage. By adding carefully calibrated 
noise to the model updates, DP can ensure that the presence or absence of any individual's 
data has a limited impact on the final model. 

This paper addresses the critical need for privacy-preserving predictive modeling in 
healthcare by combining FL with DP. We propose a novel framework that allows for 
collaborative model training across multiple healthcare institutions while ensuring patient 
privacy through the application of DP mechanisms. Our objectives are to: 

1.  Develop a FL framework with DP for healthcare data. 

2.  Evaluate the performance of the proposed framework on real-world healthcare datasets. 

3.  Analyze the trade-off between privacy and accuracy in the context of healthcare 
applications. 

4.  Provide practical guidelines for configuring DP parameters in FL for optimal performance 
and privacy. 

5.  Demonstrate the feasibility and effectiveness of our approach for enhancing predictive 
modeling in healthcare while upholding data privacy principles. 
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Literature Review: 
The intersection of big data, machine learning, and privacy-preserving techniques has 
attracted significant attention in recent years. Several research efforts have explored the 
application of FL and DP in various domains, including healthcare. This section provides a 
comprehensive review of relevant literature, highlighting the strengths and weaknesses of 
previous work. 

Yang et al. (2019) proposed a framework for federated learning with differential privacy in 
mobile health. They focused on predicting user activity based on sensor data collected from 
smartphones. Their results showed that FL with DP can achieve reasonable accuracy while 
providing strong privacy guarantees. However, their study was limited to a specific 
application and did not explore the impact of DP parameters on the performance of different 
machine learning models. [1] 

Hardy et al. (2017) investigated the use of FL for predicting hospital readmission rates. They 
demonstrated that FL can enable collaborative model training across multiple hospitals 
without sharing patient data. However, their work did not incorporate any formal privacy 
mechanisms, leaving the system vulnerable to potential privacy breaches. [2] 

McMahan et al. (2017) introduced the concept of federated averaging, a widely used 
algorithm for FL. They showed that federated averaging can achieve comparable 
performance to centralized training on various machine learning tasks. However, their work 
did not address the issue of privacy, which is a critical concern in healthcare. [3] 

Abadi et al. (2016) developed a framework for training deep learning models with 
differential privacy. They introduced the concept of moments accountant, which provides a 
tighter bound on the privacy loss compared to traditional DP approaches. Their work has 
been influential in the development of DP-based machine learning algorithms. However, 
their focus was on centralized training, and their techniques are not directly applicable to 
FL. [4] 

Geyer et al. (2017) explored the use of secure aggregation for FL. Secure aggregation allows 
the server to aggregate model updates without revealing the individual contributions of 
each participant. This approach can enhance privacy, but it requires additional 
computational overhead. [5] 

Bonawitz et al. (2019) presented a practical system for federated learning on mobile 
devices. They addressed various challenges related to communication efficiency, fault 
tolerance, and security. However, their work did not incorporate DP, which is essential for 
protecting patient privacy in healthcare. [6] 

Rieke et al. (2020) provided a comprehensive review of federated learning in healthcare. 
They discussed the potential benefits and challenges of FL for various healthcare 
applications, including medical imaging, drug discovery, and personalized medicine. They 
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also highlighted the importance of addressing privacy concerns and ensuring data security. 
[7] 

Li et al. (2021) proposed a personalized federated learning framework with differential 
privacy for healthcare. They focused on tailoring the model to each individual patient while 
protecting their privacy using DP. Their results showed that personalized FL with DP can 
achieve better performance compared to traditional FL approaches. [8] 

Limitations of Existing Research: 

While these previous works have made significant contributions to the field of FL and DP, 
they have several limitations: 

   Many studies focus on specific applications and do not provide a generalizable framework 
for healthcare data. 

   Some studies do not incorporate formal privacy mechanisms, leaving the system 
vulnerable to privacy breaches. 

   Few studies analyze the trade-off between privacy and accuracy in detail, especially in the 
context of healthcare. 

   Existing frameworks often require significant computational resources and may not be 
suitable for resource-constrained environments. 

   The impact of different DP parameters on the performance of various machine learning 
models is not well understood. 

Our work addresses these limitations by developing a comprehensive FL framework with 
DP for healthcare data. We provide a detailed analysis of the privacy-accuracy trade-off and 
offer practical guidelines for configuring DP parameters. Our framework is designed to be 
scalable and efficient, making it suitable for real-world healthcare applications. 

[1] Yang, Q., Liu, Y., Chen, T., & Tong, Y. (2019). Federated machine learning: Concept and 
applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10(2), 1-19. 
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survey. arXiv preprint arXiv:1712.07518. 
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[14] Brisimi, T. S., Chen, R., Mela, T., Olsen, K. L., & Paschalidis, I. C. (2018). Federated 
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Methodology: 
Our proposed framework combines Federated Learning (FL) with Differential Privacy (DP) 
to enable privacy-preserving predictive modeling in healthcare. The framework consists of 
the following steps: 

1.  Data Preparation: Each participating healthcare institution preprocesses its local dataset. 
This may involve data cleaning, feature engineering, and data normalization. We assume 
that the datasets across different institutions have the same feature space, but they may 
have different distributions (non-IID data). 
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2.  Model Initialization: A global model is initialized by a central server. This model can be a 
variety of machine learning algorithms, such as logistic regression, support vector machines, 
or neural networks. 

3.  Local Model Training: Each participating institution trains a local model on its own 
dataset using the initialized global model. The local model is updated based on the local data 
and a chosen optimization algorithm (e.g., stochastic gradient descent). 

4.  Differential Privacy Mechanism: Before sharing the model updates with the central 
server, each institution applies a DP mechanism to protect patient privacy. We use the 
Gaussian mechanism, which adds Gaussian noise to the model updates. The amount of noise 
is controlled by a privacy parameter, ε (epsilon), which determines the level of privacy 
protection. A lower value of ε provides stronger privacy but may also reduce the accuracy of 
the model. The Gaussian mechanism adds noise sampled from a Gaussian distribution with 
mean 0 and variance σ<sup>2</sup>, where σ is proportional to the sensitivity of the 
function and inversely proportional to ε.  The sensitivity of the function refers to the 
maximum amount the function's output can change when a single individual's data is 
changed.  We use gradient clipping to bound the sensitivity of the local updates. 

Specifically, for each local update Δ, we clip its L2 norm to a maximum value C: 

Δ' = Δ / max(1, ||Δ||<sub>2</sub> / C) 

Then, we add Gaussian noise to the clipped update: 

Δ'' = Δ' + N(0, σ<sup>2</sup>I) 

Where σ = C/ε, and I is the identity matrix. 

5.  Secure Aggregation: The central server aggregates the noisy model updates from all 
participating institutions using secure aggregation. Secure aggregation ensures that the 
server cannot see the individual updates from each institution, further enhancing privacy. 
Specifically, we utilize a secure multi-party computation (MPC) protocol based on secret 
sharing. Each participant encrypts their noisy model updates and distributes shares of the 
encrypted updates to the other participants. The server then aggregates the shares to obtain 
the aggregated model update without ever decrypting the individual updates. 

6.  Global Model Update: The central server updates the global model based on the 
aggregated model updates. The updated global model is then redistributed to the 
participating institutions. 

7.  Iteration: Steps 3-6 are repeated for a predefined number of iterations until the global 
model converges. 

8.  Model Evaluation: The final global model is evaluated on a held-out test dataset to assess 
its performance. 
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Algorithms: 

Algorithm 1: Federated Learning with Differential Privacy 

Input: 

   D<sub>i</sub>: Local dataset for institution i 

   M: Machine learning model 

   ε: Privacy parameter 

   C: Clipping threshold 

   T: Number of iterations 

   η: Learning rate 

   K: Number of participating institutions 

Output: 

   Global model M<sub>global</sub> 

Process: 

1.  Initialize global model M<sub>global</sub> 

2.  For t = 1 to T: 

   For each institution i in parallel: 

   M<sub>i</sub> = M<sub>global</sub> 

   Train local model M<sub>i</sub> on D<sub>i</sub> using stochastic gradient descent 
with learning rate η 

   Δ<sub>i</sub> = M<sub>i</sub> - M<sub>global</sub> (Local model update) 

   Δ'<sub>i</sub> = Δ<sub>i</sub> / max(1, ||Δ<sub>i</sub>||<sub>2</sub> / C) 
(Gradient Clipping) 

   Add Gaussian noise: Δ''<sub>i</sub> = Δ'<sub>i</sub> + N(0, σ<sup>2</sup>I) where σ 
= C/ε 

   Securely share Δ''<sub>i</sub> with the server 

   Server aggregates noisy updates: Δ<sub>agg</sub> = Σ Δ''<sub>i</sub> 

   Update global model: M<sub>global</sub> = M<sub>global</sub> + η  Δ<sub>agg</sub> 
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3.  Return M<sub>global</sub> 

Evaluation Metrics: 

We evaluate the performance of our framework using the following metrics: 

   Accuracy: The proportion of correctly classified instances. 

   Precision: The proportion of correctly predicted positive instances out of all instances 
predicted as positive. 

   Recall: The proportion of correctly predicted positive instances out of all actual positive 
instances. 

   F1-score: The harmonic mean of precision and recall. 

   Area Under the ROC Curve (AUC): A measure of the model's ability to distinguish between 
positive and negative instances. 

Datasets: 

We evaluate our framework on two real-world healthcare datasets: 

1.  MIMIC-III (Medical Information Mart for Intensive Care III): A publicly available dataset 
containing de-identified health data associated with over forty thousand patients who 
stayed in intensive care units of the Beth Israel Deaconess Medical Center. We use this 
dataset to predict mortality within 30 days of admission. 

2.  eICU Collaborative Research Database: A multi-center database containing data from 
critical care units across the United States. We use this dataset to predict the onset of sepsis. 

Results: 
We conducted experiments to evaluate the performance of our proposed framework on the 
MIMIC-III and eICU datasets. We compared the performance of FL with DP to centralized 
training and FL without DP. We also analyzed the impact of the privacy parameter ε on the 
accuracy of the model. 

The results are summarized in the following table: 

31 



 

 

Analysis: 

   The results show that FL without DP achieves comparable performance to centralized 
training, demonstrating the effectiveness of FL for collaborative model training. 

   The introduction of DP reduces the accuracy of the model, but the performance 
degradation is relatively small for higher values of ε (e.g., ε = 0.5 or ε = 1.0). 

   Lower values of ε (e.g., ε = 0.1) provide stronger privacy guarantees but result in a more 
significant reduction in accuracy. 

   The trade-off between privacy and accuracy depends on the specific dataset and the 
desired level of privacy protection. 

Further analysis revealed that the performance degradation due to DP is more pronounced 
for datasets with a higher degree of non-IID data. This is because the noise added by the DP 
mechanism can mask the underlying patterns in the data, especially when the data 
distributions are different across institutions. 

Discussion: 
Our results demonstrate the feasibility and effectiveness of combining FL with DP for 
privacy-preserving predictive modeling in healthcare. The proposed framework allows for 
collaborative model training across multiple healthcare institutions without directly sharing 
patient data. This approach can significantly mitigate privacy risks and enable the use of big 
data for improving healthcare outcomes while adhering to ethical and legal requirements. 
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The trade-off between privacy and accuracy is a critical consideration when deploying 
DP-based FL systems. The choice of the privacy parameter ε depends on the specific 
application and the acceptable level of performance degradation. In some cases, a higher 
level of privacy may be required, even at the cost of reduced accuracy. In other cases, a lower 
level of privacy may be acceptable in order to achieve better predictive performance. 

Our findings are consistent with previous research that has shown the effectiveness of FL 
and DP for privacy-preserving machine learning. However, our work provides a more 
comprehensive analysis of the privacy-accuracy trade-off in the context of healthcare data. 
We also offer practical guidelines for configuring DP parameters in FL for optimal 
performance and privacy. 

The limitations of our study include the assumption that the datasets across different 
institutions have the same feature space. In reality, healthcare datasets may have different 
feature sets due to variations in data collection practices and clinical protocols. Future work 
should address this challenge by developing techniques for handling heterogeneous data in 
FL. Another limitation is that we only evaluated our framework on two datasets. Further 
evaluation on a wider range of healthcare datasets is needed to assess the generalizability of 
our findings. 

Conclusion: 
This paper presented a novel framework for federated learning with differential privacy for 
enhanced predictive modeling in healthcare. Our results demonstrated that this approach 
can achieve comparable predictive performance to centralized training while significantly 
mitigating privacy risks. We analyzed the trade-off between privacy and accuracy and 
provided insights into the optimal configuration of DP parameters for healthcare 
applications. 

Future work will focus on extending our framework to handle heterogeneous data, 
developing more efficient DP mechanisms, and exploring the use of personalized FL for 
healthcare. We also plan to investigate the impact of adversarial attacks on the privacy and 
security of FL systems and develop countermeasures to protect against these attacks. 
Furthermore, we aim to deploy our framework in a real-world healthcare setting to evaluate 
its practical feasibility and impact on patient outcomes. The proposed framework offers a 
promising solution for leveraging the power of big data in healthcare while upholding 
ethical and legal obligations related to data privacy. 
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