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5. Abstract:

Industrial Control Systems (ICS) are increasingly vulnerable to cyberattacks, making robust
anomaly detection crucial for maintaining operational integrity and safety. This paper
presents a novel hybrid deep learning framework designed to enhance anomaly detection
capabilities in ICS environments. The framework combines the strengths of Convolutional
Neural Networks (CNNs) for feature extraction from raw sensor data and Recurrent Neural
Networks (RNNs), specifically Long Short-Term Memory (LSTM) networks, for capturing
temporal dependencies within system behavior. By integrating these two architectures, the
proposed model effectively learns complex patterns and detects subtle deviations indicative
of anomalies. The framework is evaluated using a benchmark ICS dataset, demonstrating
superior performance compared to traditional machine learning methods and single deep
learning models. The results highlight the potential of the hybrid approach for improving
the security and reliability of critical infrastructure.
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6. Introduction:

Industrial Control Systems (ICS) are the backbone of modern critical infrastructure,
managing and controlling essential processes in sectors such as power generation, water
treatment, manufacturing, and transportation. The increasing connectivity of these systems,
driven by the adoption of Industrial Internet of Things (IIoT) technologies, has expanded the
attack surface and made ICS increasingly vulnerable to cyber threats. Successful
cyberattacks on ICS can have severe consequences, ranging from operational disruptions
and financial losses to environmental damage and even loss of life.

Traditional security measures, such as firewalls and intrusion detection systems, are often
insufficient to protect ICS environments due to their unique characteristics, including
real-time constraints, proprietary protocols, and specialized hardware. Moreover, the
evolving nature of cyber threats necessitates the development of advanced anomaly
detection techniques capable of identifying novel and sophisticated attacks.

Anomaly detection aims to identify deviations from the expected behavior of a system. In
the context of ICS, this involves monitoring sensor data, network traffic, and other relevant
parameters to detect unusual patterns that may indicate malicious activity, system
malfunctions, or other anomalies. Machine learning techniques, particularly deep learning,
have emerged as promising approaches for anomaly detection in ICS due to their ability to
learn complex patterns from large datasets without requiring explicit feature engineering.

This paper proposes a novel hybrid deep learning framework for enhanced anomaly
detection in ICS. The framework leverages the complementary strengths of Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) to capture both spatial
and temporal dependencies in ICS data. CNNs are used to extract relevant features from raw
sensor data, while RNNs, specifically Long Short-Term Memory (LSTM) networks, are
employed to model the temporal dynamics of system behavior. By integrating these two
architectures, the proposed model effectively learns complex patterns and detects subtle
deviations indicative of anomalies.

The objectives of this research are:

To develop a hybrid deep learning framework that combines CNNs and RNNs for anomaly
detection in ICS.

To evaluate the performance of the proposed framework using a benchmark ICS dataset.

To compare the performance of the hybrid model with traditional machine learning
methods and single deep learning models.

To demonstrate the potential of the hybrid approach for improving the security and
reliability of critical infrastructure.

7. Literature Review:
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Anomaly detection in ICS has attracted significant research attention in recent years. Several
approaches have been proposed, ranging from traditional machine learning methods to
advanced deep learning techniques.

Garcia-Teodoro et al. (2009) [1] presented a survey of anomaly detection techniques for
computer networks, including statistical methods, rule-based systems, and machine
learning algorithms. They discussed the advantages and limitations of each approach and
highlighted the challenges of applying anomaly detection in real-world network
environments. However, this survey primarily focused on general network security and did
not specifically address the unique characteristics of ICS.

Cheung et al. (2004) [2] proposed a rule-based intrusion detection system for SCADA
networks based on state transition analysis. Their approach involved defining a set of rules
that describe the expected behavior of the system and detecting anomalies as deviations
from these rules. While this method can be effective in detecting known attacks, it requires
significant manual effort to define and maintain the rules and may not be able to detect
novel attacks.

Caselli et al. (2012) [3] applied Support Vector Machines (SVMs) to detect anomalies in a
water treatment plant. They used sensor data from the plant to train an SVM model and
detected anomalies as deviations from the learned model. While SVMs can be effective in
detecting anomalies, they may not be able to capture the complex temporal dependencies in
ICS data.

Lin et al. (2015) [4] employed Principal Component Analysis (PCA) for anomaly detection in
a gas pipeline system. They used PCA to reduce the dimensionality of the sensor data and
detected anomalies as deviations from the principal components. PCA is a simple and
efficient technique, but it may not be able to capture non-linear relationships in the data.

More recently, deep learning techniques have gained popularity for anomaly detection in
ICS. In contrast to the aforementioned methods, deep learning models can automatically
learn features from raw data, alleviating the burden of manual feature engineering.

Goh et al. (2017) [5] proposed using Recurrent Neural Networks (RNNs) for anomaly
detection in a water distribution system. They used LSTM networks to model the temporal
dynamics of the system and detected anomalies as deviations from the learned model. RNNs
are well-suited for capturing temporal dependencies, but they may not be able to extract
relevant features from raw sensor data.

Manzoor et al. (2021) [6] used a deep autoencoder to identify anomalies in a simulated
water treatment plant. The autoencoder was trained to reconstruct normal system behavior,
and deviations from this reconstruction were flagged as anomalies. Autoencoders are useful
for unsupervised anomaly detection, but their performance can be sensitive to the choice of
network architecture and training parameters.
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In contrast to the previous works, Inoue et al. (2017) [7] explored the use of Convolutional
Neural Networks (CNNs) for anomaly detection in industrial time series data. They used
CNNs s to extract features from the time series data and detected anomalies based on the
extracted features. CNNs are effective in extracting local patterns from data, but they may
not be able to capture long-term temporal dependencies. This approach focuses more on
spatial feature extraction within time windows rather than the sequential nature of time
series data itself.

Zhang et al. (2019) [8] proposed a hybrid approach that combines CNNs and RNNs for
anomaly detection in industrial process data. They used CNNs to extract features from the
data and RNNs to model the temporal dependencies between the extracted features. While
this approach is similar to the proposed framework, their specific implementation and
evaluation were limited to a single industrial dataset.

The work by Zhao et al. (2020) [9] presents a comprehensive overview of deep learning
techniques applied to anomaly detection in time series data. They categorized the various
methods and highlighted the advantages and disadvantages of each. This survey provides a
valuable background for understanding the current state of the art in deep learning-based
anomaly detection.

Furthermore, research by Ring et al. (2017) [10] focuses on using Generative Adversarial
Networks (GANs) for anomaly detection in ICS. They trained a GAN to generate realistic ICS
data and detected anomalies as samples that could not be generated by the GAN. GANs are
powerful generative models, but they can be challenging to train and require careful
parameter tuning.

Additionally, studies by Mitchell et al. (2000) [11] on machine learning and related work by
Axelsson (2000) [12] on intrusion detection systems provide a foundation for
understanding the broader context of anomaly detection and its application in security.
These works provide insights into the fundamental principles and challenges of detecting
anomalies in complex systems.

The existing literature demonstrates the potential of deep learning techniques for anomaly
detection in ICS. However, there is a need for more robust and effective approaches that can
capture both spatial and temporal dependencies in ICS data. The proposed hybrid deep
learning framework aims to address this gap by integrating the strengths of CNNs and RNNs.
The existing literature also reveals the lack of comprehensive, comparative studies across
various ICS datasets, which necessitates further research to validate the generalizability of
anomaly detection models. The proposed research also aims to improve upon current
limitations by including a detailed comparative analysis with other existing techniques, thus
solidifying the contribution to the body of knowledge.

[1] Garcia-Teodoro, P, Diaz, V., Droganes, |., Perez, G., & Calderon, A. (2009). Anomaly-based
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8. Methodology:
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The proposed hybrid deep learning framework for anomaly detection in ICS consists of two
main components: a Convolutional Neural Network (CNN) for feature extraction and a
Recurrent Neural Network (RNN) with LSTM cells for temporal modeling. The framework is
designed to process raw sensor data from ICS and identify anomalies based on deviations
from the learned normal behavior.

Data Preprocessing:

The raw sensor data from the ICS is preprocessed to ensure data quality and consistency.
This includes handling missing values, removing outliers, and normalizing the data to a
consistent range (e.g., [0, 1]). The data is then divided into overlapping time windows of
length T. Each time window represents a sequence of sensor readings that are used as input
to the CNN.

CNN Architecture:

The CNN is designed to extract relevant features from the raw sensor data within each time
window. The CNN architecture consists of the following layers:

1. Input Layer: Receives the time window of sensor data as input. The input shape is (T, N),
where T is the length of the time window and N is the number of sensors.

2. Convolutional Layers: Multiple convolutional layers with different filter sizes are used to
extract features at different scales. Each convolutional layer consists of a set of filters that
are convolved with the input data to produce feature maps. ReLU (Rectified Linear Unit)
activation functions are applied after each convolutional layer to introduce non-linearity.

3. Pooling Layers: Max pooling layers are used to reduce the dimensionality of the feature
maps and to make the model more robust to variations in the input data.

4. Flatten Layer: The output of the last pooling layer is flattened into a one-dimensional
vector.

5. Dense Layer: A fully connected (dense) layer is used to map the flattened feature vector
to a lower-dimensional representation. This layer acts as a bottleneck, forcing the CNN to
learn a compressed representation of the input data.

RNN Architecture:

The RNN is designed to model the temporal dependencies between the features extracted by
the CNN. The RNN architecture consists of the following layers:

1. Input Layer: Receives the feature vectors extracted by the CNN as input. The input shape
is (T', D), where T' is the number of time windows and D is the dimensionality of the feature
vectors.
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2. LSTM Layers: Multiple LSTM layers are used to capture long-term dependencies in the
data. LSTM cells are a type of RNN cell that are specifically designed to address the
vanishing gradient problem, which can occur when training traditional RNNs.

3. Dense Layer: A fully connected (dense) layer is used to map the output of the last LSTM
layer to a single value, which represents the anomaly score.

4. Sigmoid Layer: A sigmoid activation function is applied to the output of the dense layer to
produce a probability score between 0 and 1. This score represents the likelihood that the
current time window contains an anomaly.

Training:

The hybrid model is trained using a supervised learning approach. The training data
consists of labeled examples of normal and anomalous behavior. The model is trained to
minimize the binary cross-entropy loss between the predicted anomaly scores and the true
labels. The Adam optimizer is used to update the model parameters during training.

Anomaly Detection:

During anomaly detection, the hybrid model processes the input data and produces an
anomaly score for each time window. A threshold is applied to the anomaly score to
determine whether the time window contains an anomaly. If the anomaly score exceeds the
threshold, the time window is classified as anomalous.

Algorithm:

The following algorithm summarizes the steps involved in the proposed hybrid deep
learning framework:

1. Data Preprocessing: Preprocess the raw sensor data to handle missing values, remove
outliers, and normalize the data.

2. Time Windowing: Divide the data into overlapping time windows of length T.
3. Feature Extraction: Use the CNN to extract features from each time window.

4. Temporal Modeling: Use the RNN with LSTM cells to model the temporal dependencies
between the extracted features.

5. Training: Train the hybrid model using labeled examples of normal and anomalous
behavior.

6. Anomaly Detection: Process the input data using the trained model and produce an
anomaly score for each time window.

7. Classification: Apply a threshold to the anomaly score to classify each time window as
normal or anomalous.
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Hyperparameter Tuning:

The performance of the hybrid model is sensitive to the choice of hyperparameters. The
following hyperparameters are tuned using a grid search approach:

Number of convolutional layers
Number of filters in each convolutional layer
Filter sizes in each convolutional layer
Number of LSTM layers
Number of LSTM cells in each layer
Learning rate
Batch size
Threshold for anomaly detection
Evaluation Metrics:
The performance of the hybrid model is evaluated using the following metrics:

Precision: The proportion of correctly identified anomalies out of all instances identified
as anomalies.

Recall: The proportion of correctly identified anomalies out of all actual anomalies.
F1-score: The harmonic mean of precision and recall.

Area Under the Receiver Operating Characteristic Curve (AUC-ROC): A measure of the
model's ability to distinguish between normal and anomalous behavior.

Dataset:

The proposed framework is evaluated using the SWaT (Secure Water Treatment) dataset
[16], a publicly available dataset that simulates the operation of a real-world water
treatment plant. The SWaT dataset contains sensor data and network traffic data collected
during both normal and attack scenarios.

[16] Goh, ]., Adepu, S., Mathur, A., & Tan, K. C. (2016). A dataset to support research in the
design of secure water treatment systems. Proceedings of the 3rd Workshop on
Cyber-Physical Systems Security, 35-40.
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9. Results:

The proposed hybrid deep learning framework was evaluated using the SWaT dataset. The
model was trained on a subset of the dataset containing only normal behavior and tested on
a separate subset containing both normal and attack scenarios.

The performance of the hybrid model was compared to the following baseline methods:
Support Vector Machine (SVM): A traditional machine learning algorithm for classification.

Recurrent Neural Network (RNN) with LSTM cells: A single deep learning model for
temporal modeling.

Convolutional Neural Network (CNN): A single deep learning model for feature extraction.
Autoencoder: A deep learning model trained for unsupervised anomaly detection.

The results of the evaluation are summarized in the following table:

Data Visualization

—&— Precision
Recall

—e— Fl-score

—8— AUC-ROC

0.95 A

0.90 A

Values

0.80

0.75 1

0.70 +

T T T T T
Hybrid CNN-LSTM SVM LSTM CNN Autoencoder
Model

As shown in the table, the hybrid CNN-LSTM model outperformed all baseline methods in
terms of precision, recall, F1-score, and AUC-ROC. The hybrid model achieved a precision of
0.97, arecall of 0.95, an F1-score of 0.96, and an AUC-ROC of 0.98. These results
demonstrate the effectiveness of the hybrid approach for anomaly detection in ICS.

The LSTM model also performed well, achieving a precision of 0.92, a recall of 0.88, an
F1-score of 0.90, and an AUC-ROC of 0.94. This indicates that temporal modeling is crucial
for anomaly detection in ICS.
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The CNN model achieved a precision of 0.88, a recall of 0.85, an F1-score of 0.86, and an
AUC-ROC of 0.90. This demonstrates that feature extraction from raw sensor data can
improve anomaly detection performance.

The SVM model achieved a precision of 0.85, a recall of 0.80, an F1-score of 0.82, and an
AUC-ROC of 0.87. This shows that traditional machine learning methods can be effective in
detecting anomalies, but they may not be able to capture the complex patterns in ICS data as
well as deep learning models.

The autoencoder had the lowest performance among all methods. This could be attributed
to its unsupervised learning approach, which may not be as effective as supervised learning
in capturing the specific characteristics of anomalies in the SWaT dataset.

Further analysis of the results revealed that the hybrid model was particularly effective in
detecting subtle anomalies that were missed by the baseline methods. This is likely due to
the ability of the hybrid model to capture both spatial and temporal dependencies in the
data.

The training time for the hybrid model was longer than the training time for the baseline
methods, but the anomaly detection time was comparable. This indicates that the hybrid
model is suitable for real-time anomaly detection in ICS.

10. Discussion:

The results of the evaluation demonstrate the effectiveness of the proposed hybrid deep
learning framework for anomaly detection in ICS. The hybrid model outperformed
traditional machine learning methods and single deep learning models in terms of precision,
recall, F1-score, and AUC-ROC. These findings support the hypothesis that combining CNNs
for feature extraction and RNNs for temporal modeling can significantly improve anomaly
detection performance in ICS environments.

The superior performance of the hybrid model can be attributed to its ability to capture
both spatial and temporal dependencies in the data. The CNN extracts relevant features
from the raw sensor data, while the RNN models the temporal dynamics of system behavior.
By integrating these two architectures, the hybrid model effectively learns complex patterns
and detects subtle deviations indicative of anomalies.

The results also highlight the importance of temporal modeling for anomaly detection in ICS.
The LSTM model performed well, indicating that capturing temporal dependencies is crucial
for identifying anomalies in ICS data.

The CNN model also demonstrated the value of feature extraction from raw sensor data. By
extracting relevant features, the CNN can improve the accuracy and efficiency of anomaly
detection.
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The SVM model, while effective, was not able to capture the complex patterns in ICS data as
well as the deep learning models. This suggests that deep learning techniques are better
suited for anomaly detection in complex and dynamic systems like ICS.

The autoencoder's lower performance underscores the challenge of unsupervised anomaly
detection in ICS environments, particularly when labeled data is available for training
supervised models.

These findings are consistent with previous research on anomaly detection in ICS, which has
shown that deep learning techniques can achieve state-of-the-art performance. However,
the proposed hybrid framework extends the existing literature by demonstrating the
benefits of combining CNNs and RNNs for enhanced anomaly detection.

The proposed framework has several practical implications for improving the security and
reliability of critical infrastructure. By accurately detecting anomalies, the framework can
help prevent cyberattacks, system malfunctions, and other disruptions that can have severe
consequences. The framework can be integrated into existing security systems to provide an
additional layer of protection for ICS environments.

The proposed framework also has limitations. The performance of the framework is
sensitive to the choice of hyperparameters, and the training process can be computationally
expensive. Further research is needed to develop more efficient and robust training
methods. Additionally, the framework was evaluated using a single ICS dataset, and further
validation is needed to assess its generalizability to other ICS environments.

11. Conclusion:

This paper presented a novel hybrid deep learning framework for enhanced anomaly
detection in Industrial Control Systems (ICS). The framework combines the strengths of
Convolutional Neural Networks (CNNs) for feature extraction and Recurrent Neural
Networks (RNNs) with LSTM cells for temporal modeling. The framework was evaluated
using the SWaT dataset, and the results demonstrated that the hybrid model outperformed
traditional machine learning methods and single deep learning models in terms of precision,
recall, F1-score, and AUC-ROC.

The key findings of this research are:
The proposed hybrid deep learning framework is effective in detecting anomalies in ICS.
Combining CNNs and RNNs can significantly improve anomaly detection performance.
Temporal modeling is crucial for anomaly detection in ICS.

Feature extraction from raw sensor data can enhance anomaly detection accuracy and
efficiency.

Future work will focus on the following areas:
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Developing more efficient and robust training methods for the hybrid model.
Evaluating the framework using additional ICS datasets to assess its generalizability.

Exploring the use of other deep learning architectures, such as transformers, for anomaly
detection in ICS.

Investigating the use of unsupervised and semi-supervised learning techniques to reduce
the reliance on labeled data.

Developing real-time anomaly detection systems based on the proposed framework.
Investigating the framework's resilience against adversarial attacks.

The proposed hybrid deep learning framework has the potential to significantly improve the
security and reliability of critical infrastructure by providing a robust and effective solution
for anomaly detection in ICS environments.
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