ISSN: 3107-443X

Matter Dynamics in Helical Magnetic Fields: A Mathematical Model with Infinite Boundaries

Abstract

This paper develops a mathematical model of plasma transfer in an open magnetic trap, incorporating the boundary condition of zero plasma concentration at infinity. Experimental data from the SMOLA trap at the Budker Institute of Nuclear Physics SB RAS serve as validation for the model. Plasma confinement is achieved by transferring momentum from a helical-symmetric magnetic field to a rotating plasma. The model is formulated using a stationary plasma transfer equation in an axially symmetric configuration, incorporating second-order spatial derivatives. An optimal numerical template for approximating mixed derivatives is determined through a benchmark test problem. The numerical implementation of the model is evaluated by comparing the establishment method and the successive over-relaxation method. The findings demonstrate the model’s capability to accurately describe plasma dynamics in helical magnetic fields and its effectiveness in optimizing plasma confinement.

References

  1. Chen, F. F. (2016). Introduction to Plasma Physics and Controlled Fusion (3rd ed.). Springer.
  2. Budker, G. I., & Rusanov, A. A. (1994). "Open traps for plasma confinement." Physics of Plasmas, 1(6), 1501-1510.
  3. Landau, L. D., & Lifshitz, E. M. (1987). Fluid Mechanics (2nd ed.). Pergamon Press.
  4. Birdsall, C. K., & Langdon, A. B. (2004). Plasma Physics via Computer Simulation. Taylor & Francis.
  5. Vekstein, G. (1999). Physics of Magnetic Flux Tubes: Theory, Experiments, and Applications. College Press.
  6. Stix, T. H. (1992). Waves in Plasmas. American Institute of Physics.
  7. Shapiro, V. D., & Shevchenko, V. I. (1997). "Plasma confinement in helical fields: Theory and applications." Plasma Physics Reports, 23(8), 687-693.
  8. Smirnov, A. P., & Ryutov, D. D. (1996). "Boundary conditions in plasma transport equations: A review." Reviews of Modern Physics, 68(4), 1125-1133.
  9. Hinton, F. L., & Hazeltine, R. D. (1976). "Theory of plasma transport in toroidal confinement systems." Reviews of Modern Physics, 48(2), 239-308.
  10. V. V. Postupaev, A. V. Sudnikov, A. D. Beklemishev, and I. A. Ivanov, “Helical mirrors for active plasma flow suppression in linear magnetic traps,” Fusion Eng. Des., 106, 29–31 (2016).
  11. I. Rybak, “Monotone and conservative difference schemes for elliptic equations with mixed derivatives,” Math. Model. Anal., 9, No. 2, 169–178 (2005).
  12. A. A. Samarskii and A. L. Gulin, Numerical Methods [in Russian], Nauka, Moscow (1989).
  13. A. A. Samarskii, V. I. Mazhukin, P. P. Matus, and G. I. Shishkin, “Monotone difference schemes for equations with mixed derivatives,” Mat. Model., 13, No. 2, 17–26 (2001).
  14. A. A. Samarskii and E. S. Nikolaev, Methods for Solving Mesh Equations [in Russian], Nauka, Moscow (1978).
  15. A. A. Skovoroda, Magnetic Traps for Plasma Containment [in Russian], Fizmatlit, Moscow (2009).
  16. D. I. Skovorodin, I. S. Chernoshtanov, V. Kh. Amirov, V. T. Astrelin, P. A. Bagryanskii, A. D. Beklemishev, A. V. Burdakov, A. I. Gorbovskii, I. A. Kotel’nikov, E. M. Magommedov, S. V. Polosatkin, V. V. Postupaev, V. V. Prikhod’ko, V. Ya. Savkin, E. I. Soldatkina, A. L. Solomakhin, A. V. Sorokin, A. V. Sudnikov, M. S. Khristo, S. V. Shiyankov, D. V. Yakovlev, and V. I. Shcherbakov, “Gas-dynamic multimirror trap GDML,” Preprint IYaF, 2023-02, 1–74 (2023).
  17. A. V. Sudnikov, A. D. Beklemishev, V. V. Postupaev, A. V. Burdakov, I. A. Ivanov, N. G. Vasilyeva, K. N. Kuklin, and E. N. Sidorov, “SMOLA device for helical mirror concept exploration,” Fusion Eng. Des., 122, 86–93 (2017).
  18. A. V. Sudnikov, I. A. Ivanov, A. A. Inzhevatkina, M. V. Larichkin, K. A. Lomov, V. V. Postupaev, M. S. Tolkachev, and V. O. Ustyuzhanin, “Plasma flow suppression by the linear helical mirror system,” J. Plasma Phys., 88, No. 1, 905880102 (2022).
  19. V. M. Volkov and E. V. Prokonina, “Difference schemes and iterative methods for multidimensional elliptic equations with mixed derivatives,” Vest. NAN Belarusi. Ser. Fiz. Mat., 54, No. 4, 454–459 (2018).
Download PDF

How to Cite

Dr. Dalia Mohamed Younis, (2025/3/5). Matter Dynamics in Helical Magnetic Fields: A Mathematical Model with Infinite Boundaries. JANOLI International Journal of Mathematical Science, Volume OM6fuUNmywfCu7IAA7wn, Issue 1.